2018-10-18 13:31:00

Major Breakthrough in Integrated Circuits! Researchers Develop Transistors at the 0.7nm Scale

2018-10-18 13:31:00 | Share this post:

High-performance miniaturized transistors are the core of every digital device from smartphones to biomedicine, genetic decryption, and space technology. However, silicon transistors will reach the physical limit of miniaturization at 3 nm, beyond which will require radical advances allowing the fabrication of transistors at the atomic scale.

 

Professor Chung-Lin Wu of the Department of Physics at NCKU and Dr. Chia-Hao Chen of the National Synchrotron Radiation Research Center have formed the Taiwanese Condensed Matter Physics Team to usher in the next-generation of electronic devices. Their collaboration has led to the creation of a two-dimensional monoatomic layer (approximately 0.7nm thick), capable of functioning as a transistor with the low energy consumption and low heat generation required for thinner, smaller, and faster integrated circuits (ICs). Beyond all expectations, their research achievement has surpassed Moore’s law and is expected to revolutionize the development of electronic devices for AI and machine learning. Their paper was published in August this year in the top-tier international journal Nature Communications.

 

In the 1960s, Gordon Moore predicted that every 18 months, the miniaturization of semiconductor IC processes would lead to a doubling of the number of transistors that fit in a circuit as well as the corresponding efficiency. Since that time, R&D in the field of conventional transistors (the basis of 0-and-1 calculations in digital logic), has continually advanced in accordance with Moore’s law; however, the physical size of these devices cannot be reduced indefinitely. Unless an alternative is found to the existing computational paradigm, the development of digital technology will come to an abrupt halt.



Recent research on graphene has opened the door to the possibility of two-dimensional (2D) materials with a thickness of only one atom (0.3nm) existing in nature. Functional 2D monolayer materials are viewed as the Holy Grail by scientists in physics, engineering, and optoelectronics. For many years, Professor Wu has been exploring the use of two-dimensional monoatomic layer systems as electronic components. In 2016, a collaborative effort was initiated between Novel Materials Research Teams at National Tsing Hua University and National Chiao Tung University with colleagues at the Department of Physics of NCKU, including Prof. Yi-Chun Chen specializing in surface measurement and Prof. Tse-Ming Chen specializing in quantum device measurement. After more than a year of effort, they succeeded in developing materials that are only one atom thick and capable of functioning as transistors at the atomic scale.



Their monoatomic layer transistor manipulates electrons at the nanometer scale by flipping the electric field to alter the electrical properties of two-dimensional semiconductors. This represents a revolutionary advance over previous methods in which electrodes were used for manipulation. The compactness of the resulting transistor significantly reduces energy consumption and heat waste while increasing the speed. An even greater advantage of the monoatomic layer transistor is the fact that it can be applied like plastic wrap to a variety of soft and hard materials.



Chung-Lin Wu pointed out that although the 0.7nm-thick monoatomic layer transistor could not be miniaturized beyond this point, its computation and transmission speeds could potentially be thousands of times higher than those of current devices. The low energy consumption and heat dissipation would have a profound impact on current technologies. This would make possible many scenarios that previously resided only in the realm of science fiction. Smartphones would only require charging once a month and autonomous vehicles would have access to the sensing and computation required for deployment on every road. Circuits could be printed directly on any substrate to turn glasses into smart glass devices or windows into a touchscreens.

 

 

 

 

Source: NCKU News Room

  

Share this post:

Related articles

Exploring New Materials to Realize the Quantum Anomalous Hall Effect

2020-07-27 14:26:00

Research Highlights

The transmission of current with zero resistance would reduce energy consumption and largely resolve the issue of hea...

Read More

Enter quantum electronics via patterned strain engineering

2021-03-31 15:29:00

Research Highlights

Diamond is hard and transparent and is also a good insulator. The graphite, by contrast, is soft and dark and easy to...

Read More

成大QFORT致力發展台灣量子電腦關鍵技術平台

2021-06-17 11:03:00

Research Highlights

打造下一個世代護國神山產業 全世界各國政府及企業近年對量子電腦研發展現出高度重視,截至2020年全球投入研發量子運算的金額高達219億美元,科技部於去年2020年底宣布5年將投入80億台幣,要組量子電腦科研國家隊,期盼台灣在成功...

Read More

The Cornerstone of a New Generation of Cutting-edge Quantum Materials: Interdisciplinary Research Achievements of Associate Professor Jan-Chi Yang of the Department of Physics, NCKU

2022-05-13 11:49:00

Research Highlights

Associate Professor Jan-Chi Yang of the Department of Physics at NCKU and Distinguished Professors Yi-Chun Chen and T...

Read More