2019-05-22 14:26:00

Developments in Light-Controllable Multi-Digit Memory Materials

2019-05-22 14:26:00 | Share this post:

A research team led by Professors Jan-Chi Yang and Yi-Chun Chen of the National Cheng Kung University (NCKU) physics department has made a significant leap in the manipulation of next-generation memory materials.

Professor Yi-Chun Chen

Professor Yi-Chun Chen

 

Professor Jan-Chi Yang

Professor Jan-Chi Yang


With the support of the Ministry of Science and Technology, they have developed bismuth ferrite (BiFeO3), a multi-digit memory material which is capable of recording eight logic states (0-7) simultaneously in a single memory unit. Multi-digit memory devices permit information to be stored at densities that far exceed those of conventional 1-bit memory systems (which are characterized by two operating states: 0 and 1). The NCKU research team has developed a novel technology that allows for non-contact (i.e., optical) control over multiple memory states. The application of multi-digit materials in conjunction with light control technology can greatly reduce memory storage volume and energy consumption/dissipation levels compared to existing memory devices. The application of light controllable multi-digit memory to artificial intelligence systems and cloud computing is expected to reduce delays in data reading and boost computational efficiency.

This technology represents a revolutionary breakthrough that is sure to advance efforts to miniaturize multifunctional nano-devices in the near future. A report of this work was published on May 6th in the prestigious international peer-reviewed journal “Nature Materials”.

Breakthrough: Novel alternative for information technology

Smart technologies, the Internet of Things, cloud computing, artificial intelligence, and big data analytics are booming, and data storage is a key component of all of these systems. Ultra-high-performance computing platforms will require the development of reliable storage systems with (1) large-capacity, (2) high-speed access, and (3) energy-savings with a small form factor. Conventional memory systems employ two logic states: 0 and 1. Within this framework, memory density can only be increased by reducing the size of components; however, there are physical limitations to this process. Novel materials with multiple logic states and new access technologies will be key to the further development of information technology.

One research group in NCKU has made significant advances in the development of multi-digit memory materials to address the aforementioned memory bottleneck. The multiferroic material BiFeO3 achieves multi-digit memory operations based on the spontaneous electric dipole moment and electron spin arrangements. Team leader Chen described how the electrical, magnetic, and antiferromagnetic orders of BiFeO3 make it possible to record eight logic states in a single storage unit. Theoretically, it should be possible to scale down the size of the memory devices to the sub-nano scale without a loss of information. Memory devices based on multiferroic materials are far more stable than existing non-volatile memory devices, which are prone to data loss after power failure.

The most important breakthrough in this research is the development of light tunability in this type of multi-digit material. Conventional thought dictates that light (as an alternating electromagnetic wave) cannot be used to induce specific non-volatile changes in the configuration of memory devices. However, the proposed scheme employs light-induced local deformation, referred to as light-induced flexoelectric effects. Optically controllable memory devices do not require metal electrodes or complex fabrication, which satisfies the engineering ideal “the material is the device”. Light-controllable multi-digit memory represents a paradigm shift for memory development . This material can be directly integrated with advanced optical technologies, such as quantum storage and quantum communications.

The Ministry of Science and Technology (MOST) has consistently encouraged young scholars to pursue innovative ideas, to strive for breakthroughs, and to compete with the best minds in the world. Professor Shieh, Dar-Bin, the deputy minister of MOST, describes Professors Yang and Chen as highly talented young scholars. The outstanding achievements in this study are a demonstration of their ceaseless creativity and an excellent example of fundamental research being performed to de velop materials and tools which propel technological applications into the future. MOST will continue to support developments in fundamental science, and the ministry looks forward to further breakthroughs.

 

 

 

 

Date: 2019-05-22

Source: NCKU News Center

 

Share this post:

Related articles

The Cornerstone of a New Generation of Cutting-edge Quantum Materials: Interdisciplinary Research Achievements of Associate Professor Jan-Chi Yang of the Department of Physics, NCKU

2022-05-13 11:49:00

Research Highlights

Associate Professor Jan-Chi Yang of the Department of Physics at NCKU and Distinguished Professors Yi-Chun Chen and T...

Read More

突破量子通訊的未來 成大陳岳男團隊研究量子操縱性之量化分類登上國際自然通訊期刊

2022-09-05 10:57:00

Research Highlights

如何在不受信任的先決條件下進行量子通訊?國立成功大學物理系特聘教授、前沿量子科技研究中心主任陳岳男統籌和古煥宇博士主導的「量子操縱性的完全分類與其量測不兼容性之關聯」(Complete classification of steera...

Read More

Major Breakthrough in Integrated Circuits! Researchers Develop Transistors at the 0.7nm Scale

2018-10-18 13:31:00

Research Highlights

High-performance miniaturized transistors are the core of every digital device from smartphones to biomedicine, genet...

Read More

革命性超穎介面光學:跨足基礎物理與應用科學的突破

2023-11-13 15:00:00

Research Highlights

近期,成大光電系的吳品頡副教授在瞬間高光譜影像與非厄米超穎介面系統的任意偏振態控制這兩個領域取得的長足的進展,兩項研究成果接續發表在國際頂級學術期刊Nature Communications。品頡表示,這兩個研究工作都是跨團隊的合作,...

Read More